DC Power Relays (60-A, 100-A Models) G9EA-1

DC Power Relays Capable of Interrupting High-voltage, High-current Loads

- A compact relay ($73 \times 36 \times 67.2 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$) capable of switching 400-V 60-A DC loads. (Capable of interrupting 600 A at 300 VDC max.)
- The switching section and driving section are gas-injected and hermetically sealed, allowing these compact relays to interrupt high-capacity loads. The sealed construction also requires no arc space, saves space, and helps ensure safe applications.
- Downsizing and optimum design allow no restrictions on the mounting direction.
- Terminal Cover and DIN Track Adapters are also available for industrial applications.

- UL/CSA standard UL508 approved.

Note: Refer to Precautions on page 22.

Model Number Structure

Model Number Legend

G9EA- \square - \square - \square - \square
 1234

1. Number of Poles

1: 1 pole
2. Contact Form

Blank: SPST-NO
3. Coil Terminals

B: M3.5 screw terminals
Blank: Lead wire output
4. Special Functions

CA: High-current conduction (100 A)

Ordering Information

List of Models

Models	Terminals		Contact form	Rated coil voltage	Model
	Coil terminals	Contact terminals			
Switching/current conduction models	Screw terminals (See note 2.)	Screw terminals (See note 1.)	SPST-NO	12 VDC24 VDC48 VDC60 VDC100 VDC	G9EA-1-B
	Lead wires				G9EA-1
High-current conduction models	Screw terminals (See note 2.)				G9EA-1-B-CA
	Lead wires				G9EA-1-CA

Note: 1. Two M5 screws are provided for the contact terminal connection.
2. Two M3.5 screws are provided for the coil terminal connection.

Specifications

Ratings

Coil

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	Maximum voltage (See note 3.)	Power consumption
12 VDC	417 mA	28.8Ω	75% max. of rated voltage	8\% min. of rated voltage	130% of rated voltage (at $23^{\circ} \mathrm{C}$ within 10 minutes)	Approx. 5 W
24 VDC	208 mA	115.2Ω				
48 VDC	102 mA	469.3Ω				
60 VDC	86.2 mA	695.7Ω				Approx. 5.2 W
100 VDC	53.6 mA	1,864 Ω				Approx. 5.4 W

Note: 1. The figures for the rated current and coil resistance are for a coil temperature of $23^{\circ} \mathrm{C}$ and have a tolerance of $\pm 10 \%$.
2. The figures for the operating characteristics are for a coil temperature of $23^{\circ} \mathrm{C}$.
3. The figure for the maximum voltage is the maximum voltage that can be applied to the relay coil.

Contacts

Item	Resistive load	
	G9EA-1(-B)	G9EA-1(-B)-CA
Rated load	60 A at 400 VDC, 100 A at 120 VDC	30 A at 400 VDC
Rated carry current	60 A	100 A
Maximum switching voltage	400 V	400 V
Maximum switching current	100 A	30 A

Characteristics

Item		G9EA-1(-B)	G9EA-1(-B)-CA
Contact resistance (See note 2.)		$30 \mathrm{~m} \Omega \mathrm{max}$. (0.6 m Ω typical)	$10 \mathrm{~m} \Omega$ max. (0.3 m Ω typical)
Contact voltage drop		0.1 V max. (for a carry current of 60 A)	0.1 V max. (for a carry current of 100 A)
Operate time		50 ms max .	
Release time		30 ms max .	
Insulation resistance (See note 3.)	Between coil and contacts	$1,000 \mathrm{M} \Omega \mathrm{min}$.	
	Between contacts of the same polarity	$1,000 \mathrm{M} \Omega \mathrm{min}$.	
Dielectric strength	Between coil and contacts	2,500 VAC, 1 min	
	Between contacts of the same polarity	2,500 VAC, 1 min	
Impulse withstand voltage (See note 4.)		$4,500 \mathrm{~V}$	
Vibration resistance	Destruction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)	
	Malfunction	10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (Acceleration: 2.94 to $88.9 \mathrm{~m} / \mathrm{s}^{2}$)	
Shock resistance	Destruction	$490 \mathrm{~m} / \mathrm{s}^{2}$	
	Malfunction	$196 \mathrm{~m} / \mathrm{s}^{2}$	
Mechanical endurance (See note 5.)		200,000 ops. min.	
Electrical endurance (See note 6.)		120 VDC, 100 A, 3,000 ops. min.	400 VDC, $30 \mathrm{~A}, 1,000 \mathrm{ops}$. min.
		400 VDC, 60 A, 3,000 ops. min.	120 VDC, 30 A, 2,500 ops. min.
		400 VDC, 30 A, 30,000 ops. min.	---
Short-time carry current		100 A (10 min)	$150 \mathrm{~A}(10 \mathrm{~min})$
Maximum interruption current		600 A at 300 VDC (5 times)	---
Overload interruption		180 A at 400 VDC (100 times min.)	100 A at 120 VDC (150 times min.)
Reverse polarity interruption		-60 A at 200 VDC (1,000 times min.)	---
Ambient operating temperature		-40 to $70^{\circ} \mathrm{C}$ (with no icing or condensation)	
Ambient operating humidity		5% to 85%	
Weight		Approx. 310 g	

Note: 1. The above values are initial values at an ambient temperature of $23^{\circ} \mathrm{C}$ unless otherwise specified.
2. The contact resistance was measured with 1 A at 5 VDC using the voltage drop method.
3. The insulation resistance was measured with a $500-\mathrm{VDC}$ megohmmeter.
4. The impulse withstand voltage was measured with a JEC-212 (1981) standard impulse voltage waveform ($1.2 \times 50 \mu \mathrm{~s}$).
5. The mechanical endurance was measured at a switching frequency of 3,600 operations $/ \mathrm{hr}$.
6. The electrical endurance was measured at a switching frequency of 60 operations $/ \mathrm{hr}$.

Engineering Data

■ G9EA-1(-B) Switching/Current Conduction Models

Maximum Switching Capacity

Electrical Endurance
(Switching Performance)

Electrical Endurance (Interruption Performance)

Carry Current vs Energizing Time

■ G9EA-1(-B)-CA High-current Conduction Models

■ All G9EA-1 Models

Must-operate Voltage and Must-release Voltage Distributions

Vibration Resistance

Time Characteristic Distributions

Shock Malfunction

The value at which malfunction occurred was measured after applying shock to the test piece 3 times each in 6 directions along 3 axes.

Vibration Malfunction

Shock Resistance

Characteristics were measured after applying a shock of $490 \mathrm{~m}^{2} / \mathrm{s}$ to the test piece 3 times each in 6 directions along 3 axes. The percentage rate of change is the average value for all of the samples.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

Models with Screw Terminals

G9EA-1-B(-CA)

Models with Lead Wires

G9EA-1(-CA)

■ Options (Available Soon)

Terminal Cover

P9EA-C

Note: Be sure to remove the cutouts for wiring that are located in the wiring outlet direction before installing the Terminal Cover.

DIN Track Adapter
P9EA-D

Dimension (mm)	Tolerance (mm)
10 or lower	± 0.3
10 to 50	± 0.5
50 or higher	± 1

"

